Лента Мебиуса – бесконечная загадка современности. Очки мебиуса


Защитный комплект | Убежище | FANDOM powered by Wikia

OWB Защитный комплект МOWB Защитный комплект М HazmatHelmetHazmatHelmet

Защитный комплект (англ. Hazmat suit) и Маска ЗК с очками НЗ (англ. Hazmat darklight cowl) — уникальная броня и шлем в Old World Blues, дополнении к Fallout: New Vegas.

    Защитный комплект был разработан в исследовательском комплексе «Большая Гора» ещё до Великой войны и фактически представляет собой эксперимент в эксперименте: именно эти костюмы использовались рабочими на Вилле Сьерра-Мадре при монтажных работах в условиях окружения, заполненного токсином, известным как «Облако» — который, в свою очередь, также был разработан в лабораториях «Большой Горы» в экспериментальных целях. Результатом «эксперимента в эксперименте» стали люди-призраки — жуткие мутанты, навсегда застрявшие в проржавевших костюмах. Причины такого странного воздействия Облака на людей в этих костюмах так и остались загадкой — вскоре грянула Великая война.

    Защитный комплект представляет собой тяжёлый, неудобный комбинезон грязно-коричневого цвета и комплектуется шлемом-маской с противогазом и встроенным прибором ночного видения. Он никак не защищён от коррозии и теряет эластичность при использовании настолько, что впоследствии его можно снять, лишь разрезав. Прибор ночного видения очень слабый, но работает постоянно, о чём свидетельствует зелёное свечение в окулярах маски; маска плотно обхватывает лицо своего владельца и создаёт трудности при общении, так как не оборудована переговорным устройством. Несмотря на свою прочность и превосходную защиту от большинства токсинов, этот комбинезон никак не поможет своему владельцу при контакте с Облаком, хотя и был предназначен для этого.

    Характеристика Править

    Костюм обеспечивает максимальную сопротивляемость ядам, а шлем даёт постоянный эффект ночного видения.

    Местонахождение Править

    Костюм и шлем находится под защитой силового поля в локации Полигон опасных материалов. Чтобы отключить поле, нужно иметь пароль к модулю ЗК, который можно получить на заводе инновационных токсинов Z-43, или выстрелить в него из звукового эмиттера (выполнив перед этим квест «Улучшение звукового эмиттера»).

    Защитный комплект и маска ЗК с очками НЗ появляются только в дополнении к Fallout: New Vegas — Old World Blues.

    ru.fallout.wikia.com

    Лента Мебиуса – бесконечная загадка современности

    Лента Мебиуса – простая, но удивительная штука. Сделать ее можно за пару секунд, а сюрпризов, закономерностей и свойств у этого явления – масса. Чтобы это было понятнее на практике, возьмите обычную полоску бумаги, клей, соедините ее концы. Но обязательно так, чтобы один конец оказался перевернут относительно другого на пол-оборота. Вот и готова знаменитая лента Мебиуса.

    лента мебиусаО получившейся загадочной поверхности можно говорить бесконечно. Задайте себе вопрос о том, сколько поверхностей у бумажного кольца. Две? А вот и нет – одна. Проверить это очень просто. Возьмите фломастер или карандаш и попробуйте закрасить одну из сторон ленты, не отрываясь и не переходя на другую сторону. Получилось? А где же незакрашенная сторона? То-то и оно…

    Название ленте дал ее изобретатель: Август Фердинанд Мебиус, профессор университета в Лейпциге. Он посвятил научной работе свою долгую и плодотворную жизнь (а это 78 лет), а сохранял он ясность ума до самого ухода. В свои 75 лет профессор описал уникальные свойства односторонней поверхности с кажущейся двуслойностью. С тех пор лучшие умы геометрии, физики и даже духовности исследовали этот объект вдоль и поперек.

    Вы самостоятельно можете провести несколько экспериментов, взяв в руки ленту Мебиуса. Попробуйте разрезать ее вдоль, проведя предварительно среднюю линию по всей поверхности. Как вы думаете, что получится? Два кольца меньшей ширины? Снова неверно – одно! Вдвое длиннее предыдущего, но перекрученное уже дважды. Вот у него-то как раз уже будут две поверхности, а не одна, как в первом случае. Такую завитушку называют Афганской лентой, она тоже широко известна исследователям. Кстати, в духовности этот эффект называют символом дуальности и трактуют иллюзорным восприятием единого.

    ленту мебиусаА если снова провести продольную линию, но не посередине, а ближе к краю на треть ширины ленты? Разрежьте полученное кольцо, и у вас в руках их окажется уже два: лента Мебиуса и Афганская лента, причем непостижимым образом они будут сцеплены друг с другом.

    Но это далеко не все сюрпризы. Попробуйте при склеивании ленты в кольцо взять не одну, а две бумажные полоски. А потом три или даже четыре. Гарантирую: результат вас удивит еще больше!

    Любопытный опыт можно поставить и гипотетически. Взяв двойную ленту Мебиуса (то есть склеенную из двух полосок) и просунув между ними палец (карандаш, деревянную палочку – что угодно), мы сможем водить им между лентами бесконечно, доказав тем самым, что фигура состоит из двух отдельных частей. А теперь представьте себе, что между этими лентами ползает муха. Нижняя полоска для нее будет «полом», верхняя – «потолком», и так до бесконечности.

    Но на деле все совсем не так просто, как кажется. Ведь если поставить метку начала путешествия мухи «на полу», то когда насекомое сделает круг, эта самая метка окажется уже «на потолке». И чтобы снова перейти «на пол», нужно будет совершить еще один круг.

    Представьте, что муха ползет по улице. Справа от нее находятся дома под четными номерами, а слева, соответственно, под нечетными. Совершая прогулку, в какой-то момент наша путешественница удивленно заметит, что нечетные номера идут уже справа, а четные – слева! Страшно представить такую ситуацию на наших реальных дорогах с правосторонним движением, ведь скоро придется столкнуться с другими прогуливающимися «лоб-в-лоб». Вот такая она – лента Мебиуса…

    лента мебиуса применениеПрименение этой и других закономерностей нашлось не только в гипотетической, но и в реальной жизни. Например, на основе ленты созданы ремни в печатных устройствах, автоматическая передача, абразивное кольцо в затачивающих механизмах и многое другое, о чем вы даже не подозреваете. Поистине, лента Мебиуса – загадка, которую можно изучать до бесконечности!

    fb.ru

    Лента Мебиуса - открытие мирового масштаба, все факты

    Практически все знают, как выглядит символ бесконечности, напоминающий перевернутую восьмерку. Этот знак называют еще «лемниската», что с древнегреческого означает лента. Представьте себе, что символ бесконечности очень похож на реально существующую математическую фигуру. Знакомьтесь, Лента Мебиуса!

    Лента Мебиуса похожа на лемнискату - бесконечность

    Что такое Лента Мебиуса?

    Лента Мебиуса (или ее еще называют петля Мебиуса, лист Мебиуса и даже кольцо Мебиуса) – одна из наиболее известных в математике поверхностей. Петля Мебиуса - это петля с одной поверхностью и одним краем.

    Чтобы понять, о чем идет речь, и как такое может быть, возьмите лист бумаги, вырежьте полоску прямоугольной формы и в момент соединения ее концов перекрутите на 180 градусов один из них, после чего соедините. Разобраться в том, как сделать ленту Мебиуса поможет картинка ниже.

    Как сделать лист Мебиуса

    Что же такого примечательного в ленте Мебиуса?

    Лента Мебиуса – пример неориентируемой односторонней поверхности с одним краем в обычном трёхмерном Евклидовом пространстве. Большинство предметов являются ориентируемыми, имеющими две стороны, например, лист бумаги. 

    Как тогда лента Мёбиуса может быть неориентируемой, односторонней поверхностью -  скажете вы, ведь бумага, из которой она сделана имеет две стороны. А вы попробуйте взять маркер и заполнить цветом одну из сторон ленты, в конечном итоге вы упретесь в начальную позицию, причем вся лента окажется целиком закрашенной, что подтверждает наличие у нее всего одной стороны.

    Чтобы поверить в то, что у петли Мебиуса всего один край – проведите пальцем по одному из граней ленты не прерываясь, и Вы точно так же, как и в случае с раскрашиванием, упретесь в точку, с которой начали движение. Удивительно, не правда ли?

    Изучением ленты Мёбиуса и множества других интересных объектов занимается – топология, раздел математики, который исследует неизменные свойства объекта при его непрерывной деформации – растяжении, сжатии, изгибе, без нарушения целостности.

    Открытие Августа Мебиуса

    «Отцом» открывателем этой необычной ленты признан немецкий математик Август Фердинанд Мебиус, ученик Гаусса, написавший не одну работу по геометрии, но прославившийся преимущественно открытием односторонней поверхности в 1858 году. 

    Ученый Август Мебиус - kalkpro.ru

    Удивительным является тот факт, что ленту с одной поверхностью в тот же самый 1858 год открыл другой ученик Гаусса – талантливый математик Иоганн Листинг, придумавший термин «топология» и написавший серию основополагающих трудов по этому разделу математики. Однако свое название необычная лента все же получила по фамилии Мебиуса.

    Математик Иоганн Листинг - kalkpro.ru

    Есть расхожее мнение, что прообразом модели «бесконечной петли» стала неверно сшитая лента служанкой профессора Августа Мебиуса.

    На самом деле, лента была открыта давным-давно еще в древнем мире. Одним из подтверждений служит находящаяся во Франции, в музее города Арль древнеримская мозаика с такой же перекрученной лентой. На ней нарисован Орфей, очаровывающий зверей звуками арфы. На фоне неоднократно изображен орнамент с перекрученной лентой.

    Музей в Арле мозаика Орфея - kalkpro.ru

    «Магия» ленты Мебиуса

    1. Несмотря на кажущееся наличие у листа Мебиуса двух сторон, на самом деле сторона всего одна, и раскрасить в два цвета ленту не получится.
    2. Если ручкой или карандашом начертить по всей длине петли линию, не отрывая руку от листа, то грифель в конечном итоге остановится в точке, с которой Вы начали чертить линию;
    3. Примечательные опыты получаются при разрезании ленты, способные удивить, как взрослого, так и ребенка в особенности.
    • Для начала склеим ленту Мебиуса, как было рассказано ранее. Затем разрежем ее вдоль по всей длине ровно посередине, как показано ниже:

    Разрезать ленту Мебиуса посередине - kalkpro.ru

    Вас порядком удивит результат, ведь вопреки ожиданиям в руках останется не два отрезка ленты, и даже не два отдельных круга, но другая, еще более длинная лента. Это уже будет не лента Мебиуса, перекрученная на 180 градусов, а лента с поворотом на 360 градусов.

    • Теперь проведем другой эксперимент – сделаем еще одну петлю Мебиуса, после чего отмерим 1/3 ширины ленты и отрежем по этой линии. Результат поразит вас еще больше – в руках останутся две отдельные ленты разных размеров, соединенные вместе, как в цепочке: одна маленькая лента, и более длинная вторая. 

    Разрезать лист Мебиуса на одну треть ширины - kalkpro.ru

    У меньшей ленты Мёбиуса будет 1/3 от изначальной ширины ленты, длина L и поворот на 180 градусов. У второй более длинной ленты будет также ширина 1/3 от начальной, но длина 2L, а поворот на 360 градусов.

    • Можно и дальше продолжать эксперимент, разрезая получившиеся ленты на еще более узкие, результат увидите сами.

    Зачем нужна петля Мебиуса? Применение

    Лента Мебиуса – вовсе не абстрактная фигура, нужная лишь для целей математики, она нашла применение и в реальной повседневной жизни. По принципу этой ленты функционирует в аэропорту лента, передвигающая чемоданы из багажного отделения. Такая конструкция позволяет ей служит дольше в связи с равномерным изнашиванием. Открытие Августа Мебиуса повсеместно исполбьзуется в станкостроении. Конструкцию используют для большего времени записи на пленку, а также в принтерах, использующих ленту при распечатке.

    Благодаря своей наглядности, петля Мебиуса дает возможность делать современным ученым все новые и новые открытия. С момента обнаружения удивительных свойств петли по всему миру прокатилась волна новых запатентованных изобретений. Например, значительное улучшение свойств магнитных сердечников, изготовленных из ферро-магнитной ленты, намотанных по способу Мебиуса.

    Н. Тесла получил патент на многофазную систему переменного тока, использовав намотку катушек генератора по типу петли Мебиуса.

    Американский ученый Ричард Дэвис сконструировал нереактивный резистор Мебиуса - способный гасить реактивное (емкостное и индуктивное) сопротивление, не вызывая элекстромагнитных помех. 

    Схема резистора Мебиуса - kalkpro.ru

    Лента Мебиуса – широкое поле для Вдохновения

    Сложно оценить важность значения открытия петли Мебиуса, которое вдохновило не только большое множество ученых, но и писателей, художников.

    Самой известной работой, посвященной ленте Мебиуса считается картина Moebius Strip II, Red Ants или Красные Муравьи голландского художника-графика Маурица Эшера. На картине представлены муравьи, карабкающиеся по петле Мебиуса с обеих сторон, на самом деле сторона всего одна. Муравьи ползут по бесконечной петле друг за другом по одной и той же поверхности.

    Красные Муравьи Маурица Эшера - kalkpro.ru

    Художник черпал свои идеи из статей и трудов по математике, он был глубоко увлечен геометрией. В связи с чем на его литографиях и гравюрах часто присутствуют различные геометрические формы, фракталы, потрясающие оптические иллюзии.

    До сих пор интерес к петле Мебиуса находится на очень высоком уровне, даже спортсмены ввели одноименную фигуру высшего лыжного пилотажа.

    По произведению «Лента Мёбиуса» писателя фантаста Армина Дейча снят не один фильм. В форме петли Мебиуса создается огромное множество украшений, обуви, скульптур и многих других предметов и форм.

    обувь в форме петли Мебиуса - kalkpro.ruМеталлическая конструкция в форме кольца Мебиуса - kalkpro.ru

    Лист Мебиуса наложил отпечаток на производство, дизайн, искусство, науку, литературу, архитектуру.

    Бельгийский архитектор Винсан Каллебо Vincent Callebaut для парка в Тайване

    Умы многих людей волновала схожесть формы молекулы ДНК и петли Мебиуса. Существовала гипотеза, которую выдвинул советский цитолог Навашин, что форма кольцевой хромосомы по строению аналогична ленте Мебиуса. На эту мысль ученого натолкнул тот факт, что кольцевая хро­мосома, размножаясь, превращается в более длинное кольцо, чем в самом начале, или в два небольших кольца, но как в цепи продетых одно в другое, что очень напоминает выше описанные опыты с листом Мебиуса.

    В 2015 году группа ученых из Европы и США смогла закрутить свет в кольцо Мёбиуса. В научном опыте ученые использовали оптические линзы, и структурированный свет - сфокусированный лазерный луч с преопределенными интенсивностью и поляризацией в каждой точке своего движения. В итоге были получены световые ленты Мебиуса.

    Есть еще одна более масштабная теория. Вселенная – это огромная петля Мебиуса. Такой идеи придерживался Эйнштейн. Он предположил, что Вселенная замкнута, и космический корабль, стартовавший из определенной ее точки и летящий все время прямо, возвратится в ту же самую точку в пространстве и времени, с которой и началось его движение.

    Пока это всего лишь гипотезы, у которых есть как сторонники, так и противники. Кто знает, к какому открытию подведет ученых, казалось бы, такой простой объект, как Лента Мебиуса.

     

    kalkpro.ru

    Что такое лента Мебиуса? Лента Мебиуса

    Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку.Лента Мебиуса Лента Мебиуса относится к ним в полной мере. Современная математика замечательно описывает при помощи формул все ее свойства и особенности. А вот обычные люди, слабо разбирающиеся в топонимике и других геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.

    Что это такое?

    Лента Мебиуса, которую также называют петлей, поверхностью или листом, – это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.

    Кто и когда ее открыл?

    Август Фердинанд Мебиус

    Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно. Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно – в 1858 году. Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика — Иоганна Карла Фридриха Гаусса. Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны. Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства. Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».

    Свойства

    Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:Бесконечная лента Мебиуса

    1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю – другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

    2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

    3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

    4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

    5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер – 6, а вот кольцо из бумаги – 5.

    Научное использование

    Лента Мебиуса применение

    Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

    Так, существует гипотеза, согласно которой Вселенная — это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

    Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти – замкнутая на самой себе спираль приводит к самоуничтожению объекта.

    По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение - это особый перенос во времени и человек видит перед собой своего зеркального двойника.

    Реализация на практике

    В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 1800 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.

    Знак лента МебиусаНа основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

    Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

    Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них - это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

    Источник творческого вдохновения

    Лента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности — Мауриц Корнелис Эшер.Эшер Лента Мебиуса II (Красные муравьи)

    Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.

    Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.

    Литература и топология

    Необычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли.Петля Мебиуса

    Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

    Делаем сами, своими руками!

    Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:

    1. Для изготовления ее модели потребуются:

    - лист обычной бумаги;

    - ножницы;

    - линейка.

    2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

    3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 1800 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

    4. Склеиваем концы перекрученной полосы так, как показано на рисунке.Лента Мебиуса как сделать Лента Мебиуса готова.

    5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.Как сделать ленту Мебиуса

    Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса - односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.

    www.syl.ru

    Лента Мебиуса — загадка современности

    Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку. Лента Мебиуса относится к ним в полной мере. Современная математика замечательно описывает при помощи формул все ее свойства и особенности. А вот обычные люди, слабо разбирающиеся в топонимике и других геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.

    Что это такое?

    Лента Мебиуса, которую также называют петлей, поверхностью или листом, – это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.

    Кто и когда ее открыл?

    Август Фердинанд Мебиус

    Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно. Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно – в 1858 году. Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика — Иоганна Карла Фридриха Гаусса. Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны. Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства. Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».

    Свойства

    Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

    Бесконечная лента Мебиуса

    1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю – другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

    2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

    3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

    4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

    5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер – 6, а вот кольцо из бумаги – 5.

    Научное использование

    Лента Мебиуса применение

    Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

    Так, существует гипотеза, согласно которой Вселенная — это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

    Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти – замкнутая на самой себе спираль приводит к самоуничтожению объекта.

    По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение - это особый перенос во времени и человек видит перед собой своего зеркального двойника.

    Реализация на практике

    В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 1800 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.

    Знак лента Мебиуса

    На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

    Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

    Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них - это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

    Источник творческого вдохновения

    Лента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности — Мауриц Корнелис Эшер.Эшер Лента Мебиуса II (Красные муравьи)

    Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.

    Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.

    Литература и топология

    Необычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли.Петля Мебиуса

    Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

    Делаем сами, своими руками!

    Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:

    1. Для изготовления ее модели потребуются:

    - лист обычной бумаги;

    - ножницы;

    - линейка.

    2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

    3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 1800 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

    4. Склеиваем концы перекрученной полосы так, как показано на рисунке.Лента Мебиуса как сделать

    Лента Мебиуса готова.

    5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.

    Как сделать ленту Мебиуса

    Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса - односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.опубликовано econet.ru

    Автор: Бударина Светлана

    econet.ru

    Лента Мебиуса - загадка современности

    Волшебная, нереальная - это все эпитеты, которыми можно наградить ленту Мебиуса. Одну из самых больших загадок современности. Возможно, именно лента Мебиуса скрывает в себе загадки взаимодействия всего существующего в нашей Вселенной. У этой фигуры есть загадочные свойства и вполне реальные области применения.

    Лента Мебиуса - загадка современности

    Лента Мебиуса является одной из самых необыкновенных геометрических фигур. Несмотря на ее необычность, ее легко сделать в домашних условиях.

    Лента Мебиуса – это трехмерная неориентируемая фигура с одной границей и стороной. Этим она уникальна и отлична от всех других предметов, которые могут встретиться в повседневной жизни. Ленту Мебиуса также называют листом Мебиуса и поверхностью Мебиуса. Она относится к топологическим объектам, то есть объектам непрерывным. Такие объекты изучает топология - наука, исследующая непрерывность среды и пространства.

    Интерес вызывает уже само открытие ленты. Два математика, несвязанных между собой, открыли ее в одном и том же 1858 году. Этими открывателями были Август Фердинанд Мебиус и Иоганн Бенедикт Листинг.

    Условно различают ленты по способу сворачивания: по часовой стрелке и против часовой стрелки. Их еще называют правая и левая. Но различить «на глаз» вид ленты невозможно.

    Сделать такую фигуру чрезвычайно просто: нужно взять ленту ABCD. Свернуть ее так, чтобы соединить точки A и D, В и С, склеить соединенные концы.

    Некоторые считают, что эта загадочная геометрическая фигура - прообраз перевернутой восьмерки-бесконечности, на самом деле это неверно. Этот символ был введен для использования намного раньше, чем была открыта лента Мебиуса. Но сходность смысла этих фигур определенно есть. Мистики называют ленту Мебиуса символом двойственного восприятия единого. Лента Мебиуса словно говорит о взаимопроникновении, взаимосвязанности и бесконечности всего в нашем мире. Недаром, ее часто используют в качестве эмблем и товарных знаков. Например, международный символ переработки выглядит как лента Мебиуса. Лента Мебиуса может быть также своеобразной иллюстрацией некоторых явлений в природе, например, круговорота воды.

    Лента Мебиуса имеет характерные свойства, они не меняются, если ленту сжимать, комкать или резать вдоль.

    К этим свойствам относятся:

    • Односторонность. Если взять ленту Мебиуса и начать закрашивать в любом ее месте и направлении, то постепенно вся фигура будет закрашена целиком, при этом фигуру не нужно будет переворачивать.
    • Непрерывность. Каждую точку этой фигуры можно соединить с другой ее точкой, при этом ни разу не выходя за края ленты.
    • Двусвязность (или двумерность). Лента остается цельной, если резать ее вдоль. Из нее не получатся в этом случае две разные фигуры.
    • Отсутствие ориентированности. Если представить, что человек мог бы идти по этой фигуре, то при возвращении в точку начала путешествия, он бы превращался в свое отражение. Путешествие по листу бесконечности могло бы продолжаться вечно.

    Если взять ножницы и немножко поколдовать над этой загадочной поверхностью, то получится создать дополнительные необычные фигуры. Если резать ее вдоль, по линии, удаленной от краев на равное расстояние, то получится закрученная «Афганская лента». Если полученную ленту разделить вдоль, посередине, то образуются две ленты, взаимопроникающие друг в друга. Если положить друг на друга несколько полосок и соединить в ленту Мебиуса, то если такую фигуру развернуть, снова получится «Афганская лента».

    Если разрезать ленту Мебиуса с тремя или большим количествам полуоборотов, то получатся кольца, называющиеся парадромными.

    Если склеить вместе две ленты Мебиуса вдоль границ, то выйдет другая удивительная фигура – бутылка Кляйна, но ее нельзя сделать в обычном трехмерном пространстве.

    Если сгладить некоторые грани листа Мебиуса, то выйдет невозможный треугольник Пенроуза. Это плоский треугольник-иллюзия, когда смотришь на него, он кажется объемным.

    Лист Мебиуса – неиссякаемый источник для творчества писателей, художников и скульпторов. Его упоминание часто встречается в фантастической и мистической литературе. На его свойствах основывались художественные вымыслы о возникновении Вселенной, устроенности загробной жизни, передвижении во времени и пространстве. Лист Мебиуса упоминали в своих произведениях Артур Кларк, Владислав Крапивин, Хулио Кортасар, Харуки Мураками и многие другие.

    Известным художником Эшером был создан ряд литографий с использованием ленты. На наиболее известной его работе муравьи ползут по листу Мебиуса.

    Свойства ленты Мебиуса позволят показать интересные фокусы. Рассмотрим один из самых известных. Подвешиваются две ленты Мебиуса из калийной селитры, маг касается зажженной сигаретой до средней линии каждой из них. Разгоревшееся пламя удлинит первую ленту, а вторую превратит в две, связанные друг с другом. В форме ленты Мебиуса сделан популярный аттракцион «Американские горки». Часто используют эту геометрическую фигуру ювелиры при создании дизайна драгоценностей.

    Ленту Мебиуса широко применяют в науке и промышленности. Она является источником для множества научных исследований и гипотез. Существует, например, теория, что ДНК – это часть листа Мебиуса. Исследователи в области генетики уже научились разрезать одноцепочную ДНК так, чтобы получить из нее ленту Мебиуса. Физики говорят о том, что оптические законы базируются на свойствах листа Мебиуса. Например, отражение в зеркале – это своего рода передвижение во времени по аналогичной траектории. Есть научная гипотеза о том, что Вселенная – это гигантская лента Мебиуса.

    В начале 20 века Никола Тесла изобрел резистор Мебиуса, который противостоит потоку электроэнергии, не вызывая при этом электромагнитных помех. Он состоит из двух проводящих поверхностей, которые скручены на 180 ° и образуют ленту Мебиуса.

    Полоса ленточного конвейера (транспортирующей машины непрерывного действия) сделана в форме ленты Мебиуса. Такая поверхность позволяет увеличить срок использования ленты, так как ее изнашивание будет происходить равномерно. Используют форму ленты Мебиуса и при записи на непрерывную пленку.

    Лист Мебиуса применялся в матричных принтерах для продления срока годности красящей ленты.

    На основе ленты Мебиуса создано абразивное кольцо в механизмах для заточки, работает автоматическая передача.

    В настоящее время многие изобретатели пользуются свойствами данной ленты для проведения экспериментов и создания новых устройств.

    Лента Мебиуса продолжает вызывать стойкий интерес, не только у математиков и изобретателей, но и у обычных людей. Она вдохновляет деятелей искусства на создание загадочных произведений и фантастических теорий. Эксперименты с этой интересной фигурой – увлекательное занятие, как для взрослого, так и для ребенка. Ее свойства нашли свое применение в науке, технике и в быту. Лента Мебиуса - это занимательная математическая загадка, скрывающая в себе смысл идеалистического понимания устройства Вселенной, ее воздействие на нашу жизнь можно изучать бесконечно.

    www.calculator888.ru

    См. Также

    • Мёбиус, Август Фердинанд

    • Бутылка Клейна

    Ссылка

    Лист Мёбиуса на Викискладе?

    Примечания

    1. ↑ Статья о первой открытой проблеме

    2. ↑ Randrup T., Rogen P. (1996). «Sides of the Möbius strip». Archiv der Mathematik 66: 511—521.

    3. ↑ Starostin E. L., van der Heijden G. H. M. (2007). «The shape of a Möbius strip». Nature Materials. DOI:10.1038/nmat1929.

    4. ↑ (СПб.: Амфора, 2003)

    ↑ Лента Мебиуса//Журнал «Weekend» № 10 (106) от 20.03.2009Большая советская энциклопедия

    Мёбиуса лист

    поверхность, получающаяся при склеивании двух противоположных сторон AB и А‘В’ прямоугольника ABB’ A’ (см. рис. 1, а) так. что точки А и В совмещаются соответственно с точками B’ и A’ (рис. 1, б). М. л. был рассмотрен (в 1858—65) независимо друг от друга немецкими математиками А. Мебиусом (См. Мёбиус) и И. Листингом в качестве первого примера односторонней поверхности (См. Односторонние поверхности). Если двигаться вдоль по М. л. (как и по любой другой односторонней поверхности), не пересекая его границы, то (в отличие от двухсторонних поверхностей, например сферы, цилиндра) можно попасть в исходное место, оказавшись в перевёрнутом положении по сравнению с первоначальным. Это тесно связано с неориентируемостью М. л.: если отметить на нём небольшую окружность с фиксированным направлением обхода и двигать сё вдоль М. л., не пересекая границы, то можно придти к начальному положению так, что направление обхода окружности изменится на противоположное. М. л. ограничен всего лишь одной замкнутой линией. Поэтому, если разрезать М. л. по средней линии, то он не распадётся на две части, а превратится в поверхность гомеоморфную (см. Гомеоморфизм) поверхности цилиндра, отличающуюся от неё лишь тем, что она дважды перекручена вокруг себя (рис. 2).

             С топологической точки зрения М. л. — неориентируемая поверхность с нулевой эйлеровой характеристикой (См. Эйлерова характеристика), ограниченная одной замкнутой линией.

            

            

            Рис. 1. Построение листа Мёбиуса: а — исходный прямоугольник; б — лист Мебиуса.

            

            Рис. 2. Поверхность, получаемая из листа Мёбиуса разрезанием его по средней линии.

    Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

    Сохранить

    0

      

    Опубликовать 

    См. Также в других словарях:

    • Мёбиуса лист — простейшая односторонняя поверхность, рассмотренная А. Мёбиусом; получается при склеивании двух противоположных сторон АВ и A B прямоугольника ABB А (рис. а) так, что точки А и В совмещаются соответственно с точками В и А (рис. б). * * * МЕБИУСА… …   Энциклопедический словарь

    • Мёбиуса лист — Лента Мёбиуса Лист Мёбиуса (лента Мёбиуса)  топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не… …   Википедия

    • МЁБИУСА ЛИСТ — неориентируемая поверхность, у к рой эйлерова характеристика равна нулю, а край представляет собой замкнутую линию. М. л. может быть получен отождествлением двух противоположных сторон АВ и CD прямоугольника ABCD так, что точки Аи В совмещаются… …   Математическая энциклопедия

    • Лист Мёбиуса — Лента Мёбиуса Лист Мёбиуса (лента Мёбиуса, петля Мёбиуса) топологический объект, простейшая неориентируемая поверхность с краем, односторонняя при вложении в обычное трёхмерное …   Википедия

    • Лист мёбиуса — Лента Мёбиуса Лист Мёбиуса (лента Мёбиуса)  топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не… …   Википедия

    • Лента Мёбиуса — Лист Мёбиуса (лента Мёбиуса)  топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.… …   Википедия

    • Лента мёбиуса — Лист Мёбиуса (лента Мёбиуса)  топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.… …   Википедия

    • Резистор Мёбиуса — является электрическим компонентом, состоящим из двух проводящих поверхностей, отделеных друг от друга …   Википедия

    • Лист (значения) — Лист: В Викисловаре есть статья «лист» Лист  орган растений. Лист (книгопечатание)  устаревшая единица измерения формата книги. Лист ( …   Википедия

    • Мёбиус (фильм) — (Перенаправлено с Лист Мёбиуса (фильм)) Мёбиус Moebius …   Википедия

    Лист Мёбиуса [править]Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск Лента МёбиусаЛист Мёбиуса (ле́нта Мёбиуса) — топологический объект, простейшая неориентируемая поверхность с краем, односторонняя при вложении в обычное трёхмерное евклидово пространство R³. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края. Лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году. Модель ленты Мёбиуса может легко быть сделана. Для этого надо взять достаточно вытянутую бумажную полоску и соединить концы полоски, предварительно перевернув один из них. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые (топологически они, однако, неразличимы).

    Лист Мёбиуса иногда называют прародителем символа бесконечности , так как находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Это не соответствует действительности, так как символ использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса. (см. символ бесконечности).

    Содержание [убрать] 1 Свойства 2 Геометрия и топология 3 Подобные объекты 4 Открытые проблемы 5 Искусство и технология 6 См. также 7 Примечания [править] Свойства В силу своих необычных свойств лента мёбиуса широко используется фокусниками. Если попробовать разрезать ленту вдоль по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя (вдвое больше закрученная, чем лента Мёбиуса) лента, которую фокусники называют «афганская лента». Если теперь эту ленту разрезать вдоль посередине, получаются две ленты, намотаные друг на друга. Если же разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна — более тонкая лента Мёбиуса, другая — длинная лента с двумя полуоборотами (Афганская лента). Другие интересные комбинации лент могут быть получены из лент Мёбиуса с двумя или более полуоборотами в них. Например если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника. Разрез ленты Мёбиуса с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

    [править] Геометрия и топология: Параметрическое описание листа Мёбиуса. Чтобы превратить квадрат в лист Мёбиуса, соедините края, помеченные так, чтобы направления стрелок совпали.Одним из способов представления листа Мёбиуса как подмножества является параметризация., задающая ленту Мёбиуса ширины 1, чей центральный круг имеет радиус 1, лежит в плоскости x, y. Параметр u пробегает вдоль ленты, в то время как v задает расстояние от края.

    В цилиндрических координатах , неограниченная версия листа Мёбиуса может быть представлена другим уравнением.

    Топологически лист Мёбиус может быть определен как факторпространство квадрата по отношению эквивалентности для .

    Лист Мёбиуса — неориентируемая поверхность с краем.

    Лист Мёбиуса — это также пространство нетривиального расслоения над окружностью с слоем отрезок.

    [править] Подобные объекты Близким «странным» геометрическим объектом является бутылка Клейна. Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

    Другое похожее множество — сфера с плёнкой. Если проколоть отверстие в сфере с плёнкой, тогда то что останется будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет сфера с плёнкой. Чтобы визуализировать это, полезно деформировать ленту Мёбиуса так, чтобы её граница стала обычным кругом. Такую фигуру называют «пересечённая крышка» (пересечённая крышка может также означать ту же фигуру с приклееным диском, то есть погружение проективной плоскости в ).

    Существует распространённое заблуждение, что пересечённая крышка не может быть сформирована в трёх измерениях без самопересекающейся поверхности. На самом деле возможно поместить ленту Мёбиуса в с границей, являющейся идеальным кругом. Идея состоит в следующем — пусть C будет единичным кругом в плоскости xy в . Соединив антиподные точки на C, то есть, точки под углами θ и θ + π дугой круга, получим, что для θ между 0 и π / 2 дуги лежат выше плоскости xy, а для других θ ниже (причём в двух местах дуги лежат в плоскости xy).

    Можно заметить, что если диск приклеивается к граничной окружности, то самопересечение получающейся сферы с плёнкой неизбежно в трёхмерном пространстве. В терминах задания сторон квадрата, как было показано выше, сфера с плёнкой получается склеиванием двух оставшихся сторон с сохранением ориентации.

    [править] Открытые проблемы 1.Каково минимальное k такое, что из прямоугольника с меньшей стороной 1 и большей стороной k можно свернуть несамопересекающуюся ленту Мебиуса (бумагу мять не разрешается), (доказанная оценка снизу , сверху ) см. http://arbuz.uz/t_lenta.html 2.Существует ли формула, описывающая лист Мебиуса, получающийся путем складывания плоского листа бумаги? (вышеуказанные формулы описывают поверхность, которую нельзя сложить из листа бумаги, так как она имеет отрицательную кривизну; спрашивается, можно ли аналогичным образом описать поверхность нулевой кривизны?) ОТВЕТ: Таких формул существует бесконечно много, см., напр., [1].

    Сложнее найти форму, которая при этом минимизирует упругую энергию изгиба. Эта задача, впервые поставленная Садовским (M. Sadowsky) в 1930 году, была недавно решена, см. [2]. Однако решение не описывается алгебраической формулой, и маловероятно, что такая формула вообще существует. Чтобы найти пространственную равновесную форму бумажной ленты Мёбиуса, необходимо решить краевую задачу для системы дифференциально-алгебраических уравнений.

    [править] Искусство и технология Международный символ переработки представляет собой Лист Мёбиуса.Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных — лист Мёбиуса II, показывает муравьёв, ползающих по поверхности ленты Мёбиуса.

    Лист Мёбиуса также постоянно встречается в научной фантастике, например в рассказе Артура Кларка «Стена Темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщенным листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (напр. «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мебиуса используется в рассказе М. Клифтона «На ленте Мебиуса».

    С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея А. Шепелёва «Echo» (СПб.: Амфора, 2003). Из аннотации к книге: «„Echo“ — литературная аналогия кольца Мёбиуса: две сюжетные линии — „мальчиков“ и „девочек“ — переплетаются, перетекают друг в друга, но не пересекаются».[3]

    Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера выполняется в виде ленты Мёбиуса, что позволяет ему работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

    Устройство под названием резистор Мёбиуса — это недавно изобретённый электронный элемент, который не имеет собственной индуктивности.

    Лист Мебиуса

    Но известно, что лист Мёбиуса — поверхность ОДНОСТОРОННЯЯ. Пройдя вдоль всей его «средней линии» с поднятым вверх флажком, мы вернёмся в исходную точку — но флажок будет теперь «поднят» в другую сторону! Это значит, что флажок, не пересекая проективную плоскость, попал из «внешности» во «внутренность» дополнения к ней. Значит, у дополнения к проективной плоскости в пространстве нет отдельной «внешности» и отдельной «внутренности»! О как!

    Источник — «http://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0»

    Категории: Топология | Поверхности

    studfiles.net


    Смотрите также